Affiliation:
1. Fachgebiet Angewandte Nanophysik Institut für Physik & IMN MacroNano Technische Universität 98693 Ilmenau Germany
2. Central Facility for Electron Microscopy Electron Microscopy Group of Materials Science Ulm University 89081 Ulm Germany
Abstract
AbstractDespite their variable valence and favorable sodiation/desodiation potential, vanadium sulfides (VSx) used as anode materials of sodium‐ion batteries (SIBs) have been held back by their capacity decline and low cycling capability, associated with the structure distortion volume expansion and pulverization. This study reports an accessible process to tackle these challenges via fabricating a 3D‐VSx anode for SIBs with ultrahigh‐rate and ultralong‐duration stable sodium storage. The sodiation‐driven reactivation of micro‐nano 3D‐VSx activates the reconfiguration effect, effectively maintaining structural integrity. Interestingly, the mechanical degradation of 3D‐VSx over the sodiation process can be controlled by fine‐tuning the operating voltage. The self‐reconfigured open nanostructures with large void space not only effectively withstand repetitive volume changes and mitigate the damaging mechanical stresses, but also in turn construct a self‐optimized shortened ion diffusion pathway. Moreover, the sodiation‐driven reconfiguration excites many active sites and optimizes a stable solid‐electrolyte interface, thereby delivering a reversible capacity of 961.4 mA h g−1 after 1500 cycles at a high rate of 2 A g−1. This work provides new insight into the rational design of electrodes toward long‐lived SIBs through sodiation‐driven reconfiguration.
Funder
Deutsche Forschungsgemeinschaft
China Scholarship Council
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献