Ultrahigh‐Rate and Ultralong‐Duration Sodium Storage Enabled by Sodiation‐Driven Reconfiguration

Author:

Dong Yulian1,Xu Changfan1,Li Yueliang2,Zhang Chenglin1,Zhao Huaping1,Kaiser Ute2,Lei Yong1ORCID

Affiliation:

1. Fachgebiet Angewandte Nanophysik Institut für Physik & IMN MacroNano Technische Universität 98693 Ilmenau Germany

2. Central Facility for Electron Microscopy Electron Microscopy Group of Materials Science Ulm University 89081 Ulm Germany

Abstract

AbstractDespite their variable valence and favorable sodiation/desodiation potential, vanadium sulfides (VSx) used as anode materials of sodium‐ion batteries (SIBs) have been held back by their capacity decline and low cycling capability, associated with the structure distortion volume expansion and pulverization. This study reports an accessible process to tackle these challenges via fabricating a 3D‐VSx anode for SIBs with ultrahigh‐rate and ultralong‐duration stable sodium storage. The sodiation‐driven reactivation of micro‐nano 3D‐VSx activates the reconfiguration effect, effectively maintaining structural integrity. Interestingly, the mechanical degradation of 3D‐VSx over the sodiation process can be controlled by fine‐tuning the operating voltage. The self‐reconfigured open nanostructures with large void space not only effectively withstand repetitive volume changes and mitigate the damaging mechanical stresses, but also in turn construct a self‐optimized shortened ion diffusion pathway. Moreover, the sodiation‐driven reconfiguration excites many active sites and optimizes a stable solid‐electrolyte interface, thereby delivering a reversible capacity of 961.4 mA h g−1 after 1500 cycles at a high rate of 2 A g−1. This work provides new insight into the rational design of electrodes toward long‐lived SIBs through sodiation‐driven reconfiguration.

Funder

Deutsche Forschungsgemeinschaft

China Scholarship Council

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3