Remote‐Controlled Droplet Chains‐Based Electricity Generators

Author:

Zheng Huanxi12,Wu Hao13,Yi Zhiran1,Song Yuxin1,Xu Wanghuai12,Yan Xiantong1,Zhou Xiaofeng4,Wang Steven1,Wang Zuankai12ORCID

Affiliation:

1. Department of Mechanical Engineering City University of Hong Kong Hong Kong 999077 China

2. Department of Mechanical Engineering Hong Kong Polytechnic University Hong Kong 999077 China

3. School of Physics and Optoelectronics South China University of Technology Guangzhou 510641 China

4. Key Laboratory of Multidimensional Information Processing School of Communication and Electronic Engineering East China Normal University Shanghai 200241 China

Abstract

AbstractHarnessing ambient renewable mechanical energies for achieving carbon‐neutrality demands the rational design of materials and architectures which are favorable for both energy collection and conversion simultaneously. However, the direct coupling of energy collection and conversion modules leads to many unwanted problems such as material wearing, the spatial constraint for large‐scale integration, and low energy conversion efficiency. Herein, a remote‐controlled energy harvesting strategy that cleverly harnesses the unique advantage of diffusive, long‐range airflow within a confined capillary channel is developed. The reported device separates the energy collection unit, made of an elastic cavity that directly transforms external mechanical motion to pneumatic motion, from the conversion units, made of encapsulated droplet chains that serve to translate their recurring motion within the capillary channel into electrical output. In contrast to single‐drain electrode design for electricity generation from fresh droplets in open spaces, two drain electrodes are designed to collect and release electrostatically induced charges from recurring droplets in the confined channel, respectively, thereby eliminating unwanted charge accumulation on recurring droplets and leading to efficient output performance. The integration of multiple electricity generation units with such a two‐drain electrode architecture with a single energy collector improves the design resilience and relaxes the spatial limitation.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3