Elucidating the Role of Prelithiation in Si‐based Anodes for Interface Stabilization

Author:

Bai Shuang1,Bao Wurigumula2,Qian Kun3,Han Bing3,Li Weikang3,Sayahpour Baharak1,Sreenarayanan Bhagath3,Tan Darren H.S.3,Ham So‐yeon1,Meng Ying Shirley123ORCID

Affiliation:

1. Materials Science and Engineering University of California San Diego La Jolla CA 92093 United States

2. Pritzker School of Molecular Engineering University of Chicago Chicago IL 60637 United States

3. Department of NanoEngineering University of California San Diego La Jolla CA 92093 United States

Abstract

AbstractPrelithiation as a facile and effective method to compensate the lithium inventory loss in the initial cycle has progressed considerably both on anode and cathode sides. However, much less research has been devoted to the prelithiation effect on the interface stabilization for long‐term cycling of Si‐based anodes. An in‐depth quantitative analysis of the interface that forms during the prelithiation of SiOx is presented here and the results are compared with prelithiaton of Si anodes. Local structure probe combined with detailed electrochemical analysis reveals that a characteristic mosaic interface is formed on both prelithiated SiOx and Si anodes. This mosaic interface containing multiple lithium silicates phases, is fundamentally different from the solid electrolyte interface (SEI) formed without prelithiation. The ideal conductivity and mechanical properties of lithium silicates enable improved cycling stability of both prelithiated anodes. With a higher ratio of lithium silicates due to the oxygen participation, prelithiated SiO1.3 anode improves the initial coulombic efficiency to 94% in full cell and delivers good cycling retention (77%) after 200 cycles. The insights provided in this work can be used to further optimize high Si loading (>70% by weight) based anodes in future high energy density batteries.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3