Operando Investigation of Silicon Anodes During Electrochemical Cycling in Li‐ion Batteries

Author:

Hapuarachchi Sashini N. S.1,Jones Michael W. M.234ORCID,Wasalathilake Kimal C.1,Marriam Ifra13ORCID,Nerkar Jawahar Y.4,Kirby Nigel5,Siriwardena Dumindu P.6,Fernando Joseph F.S.4,Golberg Dmitri V.34,O'Mullane Anthony P.34,Zheng Jun‐chao7,Yan Cheng13

Affiliation:

1. School of Mechanical, Medical, and Process Engineering Queensland University of Technology (QUT) Brisbane QLD 4001 Australia

2. Central Analytical Research Facility Queensland University of Technology (QUT) Brisbane QLD 4001 Australia

3. Centre for Materials Science Queensland University of Technology (QUT) Brisbane QLD 4001 Australia

4. School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4001 Australia

5. Australian Synchrotron ANSTO 800 Blackburn Rd Clayton VIC 3168 Australia

6. Department of Chemistry Uppsala University Uppsala SE‐751 05 Sweden

7. School of Metallurgy and Environment Central South University Changsha Hunan 410083 China

Abstract

AbstractSilicon (Si) is recognized as a promising anode material for next‐generation anodes due to its high capacity. However, large volume expansion and active particle pulverization during cycling rapidly deteriorate the battery performance. The relationship between Si anode particle size and particle pulverization, and the structure evolution of Si particles during cycling is not well understood. In this study, a quantitative, time‐resolved “operando” small angle X‐ray scattering (SAXS) investigation into the morphological change of unwrapped and reduced graphene oxide (rGO) wrapped Si nanoparticles (Si@rGO) is conducted with respect to the operating voltage. The results provide a clear picture of Si particle size change and the role of nonrigid rGO in mitigating Si volume expansion and pulverization. Further, this study demonstrates the advantage of “operando” SAXS in electrochemical environments as compared to other approaches.

Funder

Australian Synchrotron

Australian Research Council

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3