Affiliation:
1. State Key Laboratory of Chemical Engineering Institute of Pharmaceutical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
2. ZJU‐Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou 311215 China
3. Innovation Research Institute of Technology Center Zhejiang Xinan Chemical Industrial Group Co.,ltd. Hangzhou 311600 China
Abstract
AbstractPolyethylene oxide (PEO)‐based solid polymer electrolytes (SPE) have garnered recognition as highly promising candidates for advanced lithium‐metal batteries. However, the practical application of PEO‐based SPE is hindered by its low critical current density (CCD) resulting from undesired dendrite growth. In this study, a PEO‐based SPE that exhibits an ultra‐high CCD (4 mA cm−2) is presented and enhanced lithium ionic conductivity through the incorporation of small amounts of P2S5 (PS). The crystalline Li2O‐rich and P/S‐containing solid electrolyte interphase (SEI) is revealed by cryo‐electron microscope (cryo‐EM) and Time of flight secondary ion mass spectrometry (TOF‐SIMS), which inhibits dendrite growth and adverse reactions between SPE and reductive lithium, thus offering a spherical growth behavior for dendrite‐free lithium metal anode. Consequently, utilizing the PS‐integrated SPE, a Li‐Li symmetric cell demonstrates reduced resistance during operation, enabling stable cycles exceeding 200 hours at 0.5 mA cm−2 and 0.5 mAh cm−2, a stringent test condition for PEO‐based electrolytes. Moreover, a Li/SPE/LiFePO4 (LFP) pouch cell exhibits 80% capacity retention after 100 cycles with 50 µm Li and 30 µm PEO electrolyte, showcasing its potential for practical applications.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献