Molecule Crowding Strategy in Polymer Electrolytes Inducing Stable Interfaces for All‐Solid‐State Lithium Batteries

Author:

Zhang Hong1,Deng Jiahui1,Xu Hantao1,Xu Haoran1,Xiao Zixin1,Fei Fan1,Peng Wei1,Xu Lin123,Cheng Yu1,Liu Qin1,Hu Guo‐Hua4,Mai Liqiang123ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China

2. Hubei Longzhong Laboratory Wuhan University of Technology (Xiangyang Demonstration Zone) Xiangyang Hubei 441000 China

3. Hainan Institute Wuhan University of Technology Sanya Wuhan 572000 China

4. Université de Lorraine CNRS, LRGP Nancy F‐54001 France

Abstract

AbstractAll‐solid‐state lithium batteries with polymer electrolytes suffer from electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy is proposed to modulate the Li+ coordinated structure, thus in situ constructing the stable interfaces. Since 15‐crown‐5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into a Li+ coordinated structure to weaken the Li+ coordination with polymer and boost the Li+ transport. The coordinated anions prior decompose to form LiF‐rich, thin, and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li–Li cell can stably operate over 4360 h, the LiFePO4||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate interfacial chemistry by modulating the ion environment to accommodate the interfacial issues and will inspire more effective approaches to general interface issues for polymer electrolytes.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3