A Multifunctional Molecular Bridging Layer for High Efficiency, Hysteresis‐Free, and Stable Perovskite Solar Cells

Author:

Yin Li12,Ding Changzeng3,Liu Chenguang4,Zhao Chun12ORCID,Zha Wusong3,Mitrovic Ivona Z.5,Lim Eng Gee12,Han Yunfei3,Gao Xiaomei3,Zhang Lianping3,Wang Haibin12,Li Yuanxi1,Wilken Sebastian6,Österbacka Ronald36,Lin Hongzhen3,Ma Chang‐Qi3,Zhao Cezhou1

Affiliation:

1. School of Advanced Technology Xi'an Jiaotong‐Liverpool University Renai Road Suzhou 215123 P.R.China

2. Department of Electrical Engineering and Electronics University of Liverpool Liverpool L69 72Z UK

3. i‐lab & Printable Electronics Research Center Suzhou Institute of Nano‐Tec and Nano‐Bionics Chinese Academy of Sciences (CAS) 398 Ruoshui Road, SEID, SIP Suzhou 215123 P. R. China

4. School of Robotics Xi'an Jiaotong‐Liverpool University Renai Road Suzhou 215123 P.R.China

5. Department of Electrical Engineering and Electronics University of Liverpool Liverpool L69 3GJ UK

6. Physics and Center for Functional Materials Faculty of Science and Engineering Åbo Akademi University Henriksgatan 3 Turku 20500 Finland

Abstract

AbstractAt present, the dominating electron transport material (ETL) and hole transport material (HTL) used in the state‐of‐the‐art perovskite solar cells (PSCs) are tin oxide and 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (Spiro‐OMeTAD). However, the surface hydroxyl groups of the SnO2 layer and the Li+ ions within the Spiro‐OMeTAD HTL layer generally cause surface charge recombination and Li+ migration, significantly reducing the devices' performance and stability. Here, a molecule bridging layer of 3,5‐bis(fluorosulfonyl)benzoic acid (FBA) is introduced onto the SnO2 surface, which provides appropriate surface energy, reduces interfacial traps, forms a better energy level alignment, and, most importantly, anchors (immobilizes) Li+ ions in the ETL, and consequently improves the device power conversion efficiency (PCE) up to 24.26% without hysteresis. Moreover, the device with the FBA passivation layer shows excellent moisture and operational stability, maintaining over 80% of the initial PCE after 1000 h under both aging conditions. The current work provides a comprehensive understanding of the influence of the extrinsic Li+ ion migration within the cell on the device's performance and stability, which helps design and fabricate high‐performance and hysteresis‐free PSCs.

Funder

Ministry of Science and Technology

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3