Advances and Practical Prospects for Bias‐Free Photovoltaic‐Driven Electrochemical Water Splitting Systems

Author:

He Han12345,Zhang Qixing12345,Wang Zhongke12345,Pan Sanjiang6,Zhao Ying12345,Zhang Xiaodan12345ORCID

Affiliation:

1. Institute of Photoelectronic Thin Film Devices and Technology Renewable Energy Conversion and Storage Center Solar Energy Research Center Nankai University Tianjin 300350 P. R. China

2. Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin Tianjin 300350 P. R. China

3. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 P. R. China

4. Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education Tianjin 300350 P. R. China

5. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China

6. School of Vehicle and Energy Yanshan University Qinhuangdao 066004 China

Abstract

AbstractBias‐free solar water‐splitting technology is considered an ideal solution to address the energy crisis, as it can efficiently convert solar to hydrogen energy and has made groundbreaking progress. Particularly, photovoltaic (PV)‐driven electrolysis systems exhibit promising potential for enhanced energy conversion efficiency. Nonetheless, the majority of research on PV‐driven water‐splitting systems remains confined to the laboratory scale, with the industrial‐scale application still in the nascent stages. This review comprehensively explores the pivotal factors required to practically apply the bias‐free PV‐driven electrochemical water splitting in the current research. It delves into the fundamental principles involved in the components, the configuration structure of the varied integration degree systems, the differences in composition level of the photovoltaic devices, system scale, reaction environment of the electrolytic system, and strategy for development and refinement of electrocatalysts. Furthermore, it offers a perspective analysis of future research trajectories for each component. This work aims to shed light on the scientific hurdles and future exploration of potential application prospects faced by the field in the process of becoming practical.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipality

Fundamental Research Funds for the Central Universities

Nankai University

Overseas Expertise Introduction Project for Discipline Innovation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3