Accelerating Ru0/Ru4+ Adjacent Dual Sites Construction by Copper Switch for Efficient Alkaline Hydrogen Evolution

Author:

Xi Wenshan1,Jin Lujie2,Mahmood Asif1,Zhang Weikai1,Li Youyong2,Li Hui3,An Pengfei4,Zhang Jing4,Ma Tianyi3ORCID,Liu Shengzhong (Frank)1,Yan Junqing1ORCID

Affiliation:

1. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China

2. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China

3. School of Science STEM College RMIT University Melbourne VIC 3000 Australia

4. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractThe alkaline hydrogen evolution reaction (HER) always needs the nearby dual sites of water adsorption and H2 generation, and Ruthenium‐based electrocatalysts are promising alternatives to platinum‐based materials. However, achieving both high efficiency and long‐term stability in the construction of the dual sites is still challenging. Herein, Cu‐doped RuO2 (Cu‐RuO2) is reported and undergoes instant activation for Ru0 production at the low potential state preceding the HER. The Cu2+ ions are demonstrated to work as the switch for obtaining the activated sample of Cu‐RuO2‐AC, which possesses the Ru‐RuO2 structure. The sample of Cu‐RuO2‐AC gives an overpotential of only 19 mV at the current density of 10 mA cm−2 with a Tafel slope of 32.8 mV dec−1. Moreover, at the mass activity of 1 A mgRu−1, it only needs 88 mV, which is lower than the 343 mV of commercial 40% Ru/C, or the 154 mV of activated bare RuO2 (RuO2‐AC). Density functional theory (DFT) calculations reveal that Cu2+ doping activates the nearby Ru4+. A two‐electrode H‐cell device of Cu‐RuO2‐AC||Cu‐RuO2 needs only 1.66 and 1.78 V versus RHE to achieve a current density of 100 and 200 mA cm−2 of overall water splitting. This research can help design more efficient dual‐site HER electrocatalysts.

Funder

National Natural Science Foundation of China

Australian Research Council

Australian Government

Natural Science Basic Research Program of Shaanxi Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3