Transformed Solvation Structure of Noncoordinating Flame‐Retardant Assisted Propylene Carbonate Enabling High Voltage Li‐Ion Batteries with High Safety and Long Cyclability

Author:

Lu Di1234,Zhang Shenghang1235,Li Jiedong12,Huang Lang12,Zhang Xiaohu123,Xie Bin1,Zhuang Xiangchun1,Cui Zili123,Fan Xiulin4,Xu Gaojie1236,Du Xiaofan123,Cui Guanglei12356ORCID

Affiliation:

1. Qingdao Industrial Energy Storage Research Institute Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China

2. Shandong Energy Institute Qingdao 266101 China

3. Qingdao New Energy Shandong Laboratory Qingdao 266101 China

4. State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China

5. School of Future Technology, University of Chinese Academy of Sciences 100049 Beijing China

6. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractThe evolution of high‐energy‐density lithium‐ion batteries (LIBs) urgently requires the development of high‐safety electrolytes with high voltage resistance. Here, noncoordinating flame retardant pentafluoro‐(phenoxy)‐cyclotriphosphazene (FPPN) endows propylene carbonate (PC, 70 vol%)‐based electrolytes with high graphite anode compatibility, non‐flammability, high voltage stability, and excellent separator/electrode wettability. Theoretical calculations reveal that FPPN significantly affects Li+‐PC‐anion interactions and favors Li+ desolvation. Based on in situ optical microscopy and in situ differential electrochemical mass spectrometry, it is innovatively proposed that large amounts of H2 and C3H6 from PC decomposition play a dominant role in destroying the graphitic structure. The evolution of H2 and C3H6 is dramatically alleviated and totally suppressed, respectively, when FPPN prevents PC‐induced graphite exfoliation. More encouragingly, an optimized PC/FPPN‐based electrolyte (70 vol% PC) enables a high voltage LiCoO2/graphite pouch cell (4.35 V, ≈2.6 Ah, ≈242 Wh kg−1) with excellent cycle life and high safety. This work deepens the understanding of PC‐graphite compatibility and opens a new avenue of realizing practical application of PC‐based electrolytes (PC content over 50 vol%) in high capacity (over 2 Ah) LIBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3