Affiliation:
1. Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage Devices School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
2. State Key Laboratory of Silicon and Advanced Semiconductor Materials Zhejiang University Hangzhou 310027 China
3. School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
Abstract
AbstractDeveloping an optimal multifunctional flame‐retardant separator is crucial for enhancing lithium metal battery (LMB) safety. However, this task poses challenges due to the inferior electrochemical stability and limited ion transport of most fire retardant‐based coatings. In this work, the core–shell structured flame‐retardant matrix is elaborated by in situ growing a thin layer of MOF armor onto flame‐retardant ammonium polyphosphate (APP) bulk materials to further manufacture a multifunctional separator (APP@ZIF‐8@PP). The MOF armor acts as both a protector and ion transport regulator, effectively safeguarding APP from side reactions and optimizing the efficiency, selectivity, and deposition behavior of ion flux. Notably, such separator demonstrates a self‐acceleration mechanism, i.e., APP and ZIF‐8 can promote the decomposition of each other mutually, activating the flame‐retardant effect at lower temperatures. Additionally, APP@ZIF‐8 aids in forming a dense char layer during pyrolysis, which can insulate against the transfer of oxygen and heat. Finally, the LMBs assembled with such a multifunctional separator exhibit heightened safety and optimized electrochemical performance. This work provides valuable insights into the development of advanced porous materials‐based flame‐retardant separators, contributing to safer and more reliable energy storage devices.
Funder
National Natural Science Foundation of China
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献