Ultrafine Fe2C Iron Carbide Nanoclusters Trapped in Topological Carbon Defects for Efficient Electroreduction of Carbon Dioxide

Author:

Su Jianwei12ORCID,Pan Dianhui1,Dong Yan1,Zhang Yangyuan2,Tang Yulong1,Sun Jian34,Zhang Linjuan34,Tian Ziqi13,Chen Liang13ORCID

Affiliation:

1. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P.R. China

2. Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education) Anhui University Hefei Anhui 230601 P.R. China

3. University of Chinese Academy of Sciences Beijing 100049 P.R. China

4. Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P.R. China

Abstract

AbstractNormally, the CO2 reduction reaction (CO2RR) on Fe‐based materials is unfavorable due to the poisoning of reaction sites by CO products. By modulating the electronic structures of Fe sites via carbonization, the CO binding strength can be optimized to facilitate the CO2RR. In the present study, a dual N‐elimination strategy is adopted to synthesize and stabilize a rarely reported iron carbide phase Fe2C nanoclusters with a mean diameter of 1.07 nm trapped in topological carbon defects. Notably, the ultrafine Fe2C clusters present an excellent performance on electrocatalytic CO2RR, which can drive a current density of 8.53 mA cm−2 with Faradaic efficiency of 97.1% for CO production at −0.7 V versus reversible hydrogen electrode. Density functional theory calculations reveal that the nanometric Fe2C cluster possesses much weaker binding with CO than the Fe crystalline surfaces and other iron carbides, thus promoting the CO desorption and overall CO2RR process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningbo

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3