Affiliation:
1. Qingdao Industrial Energy Storage Research Institute Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 China
2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
3. School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
Abstract
AbstractAnode‐free lithium metal batteries (AFLMBs) are the subject of increasing attention due to their ultrahigh energy density, simplified structure, reduced cost, and relatively high safety, but their thermal runaway performance under abuse conditions has been rarely explored, and a clear understanding of whether the absence of a highly‐reactive lithium metal anode is equal to thermal runaway free remains elusive. Herein, by systematically examining the thermal runaway characteristics of a 2.0 Ah AFLMB, it is revealed that under elevated temperatures, discharged anode‐free pouch cell is safe while the fully‐charged one indeed undergoes thermal runaway, but with a milder intensity than that of a lithium metal battery with the same capacity. Moreover, mechanistic investigations demonstrate that thermal runaway of an AFLMB employing a conventional electrolyte is triggered and dominated by anode‐induced exothermic interactions and the broken separator induced electrodes interaction. Moreover, it is shown for the first time that adding fluoroethylene carbonate in an electrolyte leads to ring‐opening repolymerization at 170 °C to form a thermal‐stable solid layer between anode and cathode, which inhibits the direct contact of electrodes and effectively postpones violent self‐heating. This comprehensive exploration of thermal runaway characteristics and mechanisms of large format AFLMBs sheds fresh light on developing high energy density and safety‐enhanced lithium metal batteries.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献