Designing Zwitterionic Gel Polymer Electrolytes with Dual‐Ion Solvation Regulation Enabling Stable Sodium Ion Capacitor

Author:

Liu Siyang1,Cheng Hongtai1,Mao Runyue1,Jiang Wanyuan2,Wang Lin1,Song Zihui1,Pei Mengfan1,Zhang Tianpeng1,Hu Fangyuan1ORCID

Affiliation:

1. School of Materials Science and Engineering State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Technology Innovation Center of High Performance Resin Materials (Liaoning Province) Key Laboratory of Energy Materials and Devices (Liaoning Province) Dalian University of Technology Dalian 116024 China

2. State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering School of Chemical Engineering Technology Innovation Center of High Performance Resin Materials (Liaoning Province) Key Laboratory of Energy Materials and Devices (Liaoning Province) Dalian University of Technology Dalian 116024 China

Abstract

AbstractSodium ion capacitors (SICs) show high energy/power densities owing to the special dual‐ion energy storage mechanism with cation intercalation and anion adsorption. However, the strong ion‐solvent interactions make it difficult for interfacial ion desolvation, which not only limits the ion transport kinetics, but also results in the solvent co‐intercalation into electrode materials. Here, an advanced zwitterionic gel polymer electrolyte (GPE) is developed to weaken the ion‐solvent interactions. The 3‐(1‐vinyl‐3‐imidazolio) propanesulfonate (VIPS) zwitterions help to lower the desolvation barriers, enabling fast ion transfer kinetics for constructing stable quasi‐solid‐state SICs. Furthermore, the decomposition of VIPS contributes to the formation of S‐ and N‐based inorganic interphase on the surface of hard carbon anode, which reduces the Na+ ion diffusion barriers and improves electrochemical compatibility. The designed Zwitterionic GPE can stabilize 4.0 V hard carbon//activated carbon SICs with 95.3% capacity retention after 9000 cycles, showing a high energy density of 140.2 Wh kg−1. This study highlights the regulation of ion‐solvent chemistry and provides a guiding principle in electrolyte design for advanced hybrid ion capacitors.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3