Heterointerface Energetics Regulation Strategy Enabled Efficient Perovskite Solar Cells

Author:

Zhu Yunfei1,Zhang Zuolin1,Zhao Xuefan1,Li Mengjia1,Feng Yinsu1,Zhang Shuliang2,Gao Wenhuan1,Chen Jiangzhao3,Tang Jian‐Xin45,Chen Cong14ORCID

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment School of Materials Science and Engineering Hebei University of Technology Tianjin 300401 China

2. Department of Building Engineering Hebei Petroleum University of Technology Chengde Hebei 067000 China

3. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China

4. Macao Institute of Materials Science and Engineering (MIMSE) Faculty of Innovation Engineering Macau University of Science and Technology Taipa Macau 999078 P. R. China

5. Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China

Abstract

AbstractIn the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiative recombination and energy dissipation occur due to defects and suboptimal energy level alignment, can be principally held accountable for the Voc losses. Herein, a heterointerface energetics regulation (HER) strategy is proposed by introducing potassium trifluoroacetate (KTFA) in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level. It is first demonstrated that non‐doping K+ but precipitating at the upper and buried perovskite will improve energy‐level alignment for charge extraction dynamics. In addition, the TFA exhibits strong electrostatic force with undercoordinated Pb2+ in the buried contact of perovskite and Sn4+ in the SnO2 electron transporting layer. Based on the vacuum flash evaporation green treatment without anti‐solvent, the Rb0.02(Cs0.05FA0.95)0.98PbI0.91Br0.03Cl0.06 and Cs0.05FA0.95PbI3 based device can achieve maximum efficiency of 23.36% and 24.48%, respectively. Further, the modified devices exhibit 92% initial efficiency output after 1200 h of aging. HER strategy for addressing interface defects and bandgap alignment are poised to advance both the performance and stability of perovskite solar cells.

Funder

Science and Technology Development Fund

State Key Laboratory of Reliability and Intelligence of Electrical Equipment

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3