12.84% Efficiency Flexible Kesterite Solar Cells by Heterojunction Interface Regulation

Author:

Xu Xiao12,Zhou Jiazheng12,Yin Kang12,Wang Jinlin12,Lou Licheng12,Li Dongmei123,Shi Jiangjian1,Wu Huijue1,Luo Yanhong123,Meng Qingbo134

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China

2. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 P. R. China

4. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractDue to their environmental friendliness, low cost, and versatility in applications, flexible Cu2ZnSn(S, Se)4 (CZTSSe) solar cells have garnered significant attention in recent years. However, the lack of alkali metal elements in the flexible substrate has posed a challenge to the advancement of flexible CZTSSe solar cells. In this study, a post‐treatment strategy is proposed involving Rb ions to simultaneously regulate the surface properties of the CZTSSe film and the reactions during the CdS chemical bath deposition (CBD) process. Material and chemical characterization results confirm that Rb ions effectively passivate the detrimental Se0 defect, leading to a more active surface for the CdS epitaxial growth. Additionally, the coordination between Rb ions and thiourea in the CBD solution improves the ion‐by‐ion deposition of the CdS layer. These beneficial effects significantly improve the heterojunction interface and consequently enable the flexible CZTSSe solar cell to achieve a record total‐area efficiency of 12.84% and excellent bending performance. Overall, the heterojunction interface regulation strategy employed in this work, along with the obtained remarkable results, offer promising prospects for the development of flexible CZTSSe solar cells.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3