Defect Synergistic Regulations of Li&Na Co‐Doped Flexible Cu2ZnSn(S,Se)4 Solar Cells Achieving over 10% Certified Efficiency

Author:

Sun Quanzhen12ORCID,Shi Chen12,Xie Weihao12,Li Yifan12,Zhang Caixia12,Wu Jionghua12,Zheng Qiao13,Deng Hui12ORCID,Cheng Shuying123

Affiliation:

1. Institute of Micro‐Nano Devices and Solar Cells College of Physics and Information Engineering Fuzhou University Fuzhou 350108 P. R. China

2. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China

3. Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou 213164 P. R. China

Abstract

AbstractIon doping is an effective strategy for achieving high‐performance flexible Cu2ZnSn(S,Se)4 (CZTSSe) solar cells by defect regulations. Here, a Li&Na co‐doped strategy is applied to synergistically regulate defects in CZTSSe bulks. The quality absorbers with the uniformly distributed Li and Na elements are obtained using the solution method, where the acetates (LiAc and NaAc) are as additives. The concentration of the harmful CuZn anti‐site defects is decreased by 8.13% after Li incorporation, and that of the benign NaZn defects is increased by 36.91% after Na incorporation. Synergistic Li&Na co‐doping enhances the carrier concentration and reduces the interfacial defects concentration by one order of magnitude. As a result, the flexible CZTSSe solar cell achieves a power conversion efficiency (PCE) of 10.53% with certified 10.12%. Because of the high PCE and the homogeneous property, the Li&Na co‐doped device is fabricated to a large area (2.38 cm2) and obtains 9.41% PCE. The co‐doping investigation to synergistically regulate defects provides a new perspective for efficient flexible CZTSSe solar cells.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3