Affiliation:
1. Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage Devices Collaborative Innovation Center of Advanced Energy Materials School of Materials and Energy Guangdong University of Technology Guangzhou 510006 P. R. China
Abstract
AbstractDespite remarkable progress in perovskite solar cells (PSCs), the unsatisfying stability strongly interrelated with the defect density remains the main obstacle for commercialization. Herein, a synergetic defect passivation method is judiciously designed that consists of a precursor engineering strategy based on an ionic liquid 1‐butylsulfonate‐3‐methylimidazolium dihydrogen phosphate (BMDP), and two‐stage annealing (TSA) treatment to sufficiently passivate defects and enhance performance further. It is found that the multifunctional groups from BMDP have strong chemical interactions and form chelated complexes with perovskite components thus effectively passivating the intrinsic defects. Synergized by the sequential TSA treatment, the formed hydrophobic complexes can be precisely controlled with filling along grain boundaries (GBs) and on surfaces, leading to a wrapping of perovskite grains and significant passivation of GBs. Consequently, both deep‐ and shallow‐level defects in the bulk, at GBs and surface are sufficiently passivated, resulting in a champion efficiency of 24.20%. Impressively, the resultant unencapsulated films and corresponding devices exhibit admirable stability with maintaining 83.9% of initial composition for 4000 h of aging in moist air, 81.7% original structure after continuous heating for 1600 h, and 97% initial power conversion efficiency for 1000 h under continuous illumination. This work provides an efficient strategy toward improved efficiency and stability PSCs.
Funder
National Natural Science Foundation of China
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献