In Situ Fabrication of Graphdiyne Nanoisland Anchored Ti3C2Tx Film to Accelerate Intercalation Pseudocapacitance Kinetics

Author:

Wu Danni12,Zhang Yuman3,Man Zengming12ORCID,Zhang Haiyang12,Zhu Xiaolin12,Ding Jing3,Xu Jianhong4ORCID,Bao Ningzhong3ORCID,Lu Wangyang12ORCID

Affiliation:

1. National Engineering Lab for Textile Fiber Materials & Processing Technology Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China

2. Zhejiang Provincial Innovation Center of Advanced Textile Technology Zhejiang Sci‐Tech University Shaoxing 312000 P. R. China

3. State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China

4. The State Key Laboratory of Chemical Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China

Abstract

AbstractA key challenge in flexible supercapacitor is balancing the trade‐off between high capacity and fast charging ability caused by dense structure‐induced sluggish ionic diffusion and storage dynamics. Herein, a hydrogen‐rich graphdiyne (GDY)–Ti3C2Tx electrode is reported with tunable interlayer spacing, abundant active sites, and extensive charge storage nanochannels. In particular, the GDY–Ti3C2Tx (12.6 wt.%) electrode has a remarkable volumetric capacitance (2296 F cm−3 at 1 A cm−3) and fast charging behavior (1262 F cm−3 at 50 A cm−3) resulting from the shortened transport pathways, enhanced ionic diffusion rate, and facilitated electrolyte mass transport. Moreover, an all‐solid‐state supercapacitor (ASSC) delivers a high volumetric energy density of 65.6 mWh cm−3, as well as long‐term deformable cyclic stability and high capacitance retention properties under harsh conditions. Density functional theory calculations and molecular dynamic simulation demonstrate the fast electronic responsiveness of the GDY–Ti3C2Tx heterostructure owning to the stronger H+ electrostatic attraction, lower migration resistance, and accelerated intercalation pseudocapacitance kinetics. In situ X‐ray diffraction reveals that a stable Ti─O─C bond bridged organic–inorganic heterostructure can tolerate the repeated high‐current charge/discharge cycling process. The state‐of‐the‐art ASSC delivers multiple functional outputs and shows great potential for efficient energy supply in practical applications.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3