Self‐Adaptive Hierarchical Hosts with Switchable Repulsive Shielding for Dendrite‐Free Zinc‐Ion Batteries

Author:

Lin Dewu1ORCID,Shi Dehuan2,Zhu Anquan1,Yang Chengkai2,Zhang Tian1,Liu Kai1,Liu Kunlun1,Hong Guo1,Zhang Wenjun1ORCID

Affiliation:

1. Department of Materials Science Engineering & Center of Super‐Diamond and Advanced Films (COSDAF) City University of Hong Kong Kowloon Hong Kong 999077 China

2. College of Materials Science and Engineering Fuzhou University Fuzhou 350108 China

Abstract

AbstractThe engineering of anode‐electrolyte interphase for highly reversible and dendrite‐free Zn plating‐stripping continues to pose a significant challenge in the progression of aqueous Zn‐ion batteries (AZIBs). In this study, a novel approach is introduced that involves the design of a hierarchical carbon nanotube (CNT)‐based host through functionalization with cetyltrimethylammonium cations (CTA+). This hierarchical host enables dynamically switchable repulsive shielding to regulate Zn plating. The CNT scaffold, featured with high flexibility and conductivity, facilitates expandable accommodation of continuous Zn plating. Concurrently, the entangled CTA+ cations, acting as manipulators to form switchable repulsive shields, dynamically suppress the growth of Zn dendrites, and result in uniform Zn plating within cationic CNT (C‐CNT) hosts. The cationic shielding effect is further elucidated through density functional theory calculations. By incorporating the self‐adaptive C‐CNT host, Zn symmetric cells exhibit an impressively stable cycling lifespan exceeding 6500 h at 1 mA·cm−2 and achieve a cumulative capacity of 6000 mAh·cm−2 at 4 mA·cm−2. Full batteries, by coupling the C‐CNT@Zn anode and MnO2 cathode, demonstrate an 88% capacity retention after 2000 cycles at 2 A·g−1. The design of the self‐adaptive C‐CNT host offers a promising approach in electrode‐electrolyte interphase engineering toward the practical applications of Zn‐based energy storage systems.

Funder

City University of Hong Kong

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3