High‐Capacity Sub‐Nano Divalent Silicon from Biosilicification

Author:

Liu Zi'ang1,Wang Xuanpeng23,Hu Jingwen4,Meng Jiashen1,Niu Chaojiang5,Liu Fang1,Cui Lianmeng1,Yu Ruohan1,Mai Liqiang13ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

2. Department of Physical Science & Technology, School of Science Wuhan University of Technology Wuhan 430070 P. R. China

3. Hubei Longzhong Laboratory Wuhan University of Technology (Xiangyang Demonstration Zone) Xiangyang Hubei 441000 P. R. China

4. Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning & Design) Hangzhou Zhejiang 310020 P. R. China

5. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China

Abstract

AbstractIn terms of high capacity and reliable safety, low‐valent silicon‐based composites with small grain sizes are practicable anode materials for lithium‐ion batteries. However, robust tetravalent silicon precursors make the synthesis hard to be green. Using biosilicification in water hyacinth (Eichhornia crassipes), it is found to be a superior natural precursor of low‐valent silicon. The biogenic sub‐nano (0.5 nm) siliceous dots composite (EC‐SiOC) shows a reversible conversion mechanism between Si─O and C─O bonds, unlike previous lithium storage mechanisms associated with alloying reactions. Due to the homogeneous biogenic structure facilitating the solid‐phase reaction, the normalized energy consumption of pyrolytic EC‐SiOC is about 80% lower than the carbothermic reduction of silica, similar to molten salt electrolysis. Statistically, the sampling survey of EC‐SiOC from different regions shows a high average capacity of 749.9 mAh g−1 under a current density of 100 mA g−1. This study reveals the great potential of biomass precursors for synthesizing Si─O─C materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3