Pompon Mum-like SiO2/C Nanospheres with High Performance as Anodes for Lithium-Ion Batteries

Author:

Sun Xiaohui1,Luo Yuan1,Li Xuenuan1,Wang Yujie1,Lin Shilong1,Ding Weile1,Guo Kailong1,Zhang Kaiyou1,Qin Aimiao1

Affiliation:

1. Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China

Abstract

SiO2 has a much higher theoretical specific capacity (1965 mAh g−1) than graphite, making it a promising anode material for lithium-ion batteries, but its low conductivity and volume expansion problems need to be improved urgently. In this work, pompon mum-like SiO2/C nanospheres with the sandwich and porous nanostructure were obtained by using dendritic fibrous nano silica (DFNS) and glucose as matrix and carbon source, respectively, through hydrothermal, carbonization and etching operations. The influence of SiO2 content and porous structure on its electrochemical performance was discussed in detail. The final results showed that the C/DFNS-6 with a SiO2 content of 6 wt% exhibits the best electrochemical performance as a negative electrode material for lithium-ion batteries due to its optimal specific surface area, porosity, and appropriate SiO2 content. C/DFNS-6 displays a high specific reversible capacity of 986 mAh g−1 at 0.2 A g−1 after 200 cycles, and 529 mAh g−1 at a high current density (1.0 A g−1) after 300 cycles. It also has excellent rate capability, with a reversible capacity that rises from 599 mAh g−1 to 1066 mAh g−1 when the current density drops from 4.0 A g−1 to 0.2 A g−1. These SiO2/C specific pompon mum-like nanospheres with excellent electrochemical performance have great research significance in the field of lithium-ion batteries.

Funder

Foundation of Guangxi Science and Technology Programs

National Natural Science Foundation of China

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3