Electronegative Nanochannels Accelerating Lithium‐Ion Transport for Enabling Highly Stable and High‐Rate Lithium Metal Anodes

Author:

Hao Zhendong1,Wang Chengjie1,Wu Yue1,Zhang Qianqian1ORCID,Xu Hong2,Jin Yuhong1,Liu Jingbing1,Wang Hao1,He Xiangming2

Affiliation:

1. Key Laboratory for New Functional Materials of Ministry of Education Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 China

2. Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China

Abstract

AbstractAchieving a high Li+ transference number is an effective strategy to inhibit the nucleation of lithium dendrites on the metal anode according to classical Sand's time principle. However, improving the Li+ transference number usually causes aloss of ionic conductivity of lithium metal batteries. Here, inspired by biological ion channels tuning ion transport, an electronegative nanochannels separator is developed to accelerate Li+ transport for enabling dendrite‐free and high‐rate lithium metal anodes. Benefiting from selective and fast Li+ transport, the electronegative nanochannels separator can simultaneously achieve high Li+ transference number (0.77) and high Li+ conductivity (1.36 mS cm−2) within a liquid lithium metal battery. Such an optimization of Li+ transport dynamics can significantly prolong the nucleation time of lithium dendrite and thus effectively suppress dendritic growth, which contributes to an extremely stable Li plating/stripping cycling for over 2000 h at a high current density of 5 mA cm−2. When assembled into lithium metal batteries, the electronegative nanochannels separator enables superior comprehensive electrochemical performance compared with the commercial polyolefin one. This work provides new insights into the design of functional separators toward dendrite‐free and high‐rate liquid lithium metal batteries.

Funder

Beijing Nova Program

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3