Design of Flame‐Made ZnZrOx Catalysts for Sustainable Methanol Synthesis from CO2

Author:

Pinheiro Araújo Thaylan1ORCID,Morales‐Vidal Jordi23ORCID,Zou Tangsheng1ORCID,Agrachev Mikhail4ORCID,Verstraeten Simon1ORCID,Willi Patrik O.1ORCID,Grass Robert N.1ORCID,Jeschke Gunnar4ORCID,Mitchell Sharon1ORCID,López Núria2ORCID,Pérez‐Ramírez Javier1ORCID

Affiliation:

1. Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich Vladimir‐Prelog‐Weg 1 Zurich 8093 Switzerland

2. Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Av. Països Catalans 16 Tarragona 43007 Spain

3. Universitat Rovira i Virgili Av. Catalunya 35 Tarragona 43002 Spain

4. Laboratory of Physical Chemistry Department of Chemistry and Applied Biosciences ETH Zurich Vladimir‐Prelog‐Weg 2 Zurich 8093 Switzerland

Abstract

AbstractMixed zinc‐zirconium oxides, ZnZrOx, are highly selective and stable catalysts for CO2 hydrogenation to methanol, a pivotal energy vector. However, their activity remains moderate, and descriptors to design improved systems are lacking. This work applies flame spray pyrolysis (FSP), a one‐step and scalable method, to synthesize a series of ZnZrOx catalysts, and systematically compares them to coprecipitated (CP) analogs to establish deeper synthesis–structure–performance relationships. FSP systems (up to 5 mol%) generally display a threefold higher methanol productivity compared to their CP counterparts. In‐depth characterization and theoretical simulations show that, unlike CP, FSP maximizes the surface area and formation of atomically dispersed Zn2+ sites incorporated in lattice positions within the ZrO2 surface, which is key to improving performance. Analysis by in situ electron paramagnetic resonance (EPR) spectroscopy reveals that the specific architecture of the flame‐made catalyst markedly fosters the generation of oxygen vacancies. Together with surrounding Zn and Zr‐O atoms, the oxygen vacancies create active ensembles that favor methanol formation through the formate path while suppressing undesired CO production, as confirmed by kinetic modeling. This study elucidates the nature of active sites and their working mechanism, pushing forward ZnZrOx‐catalyzed methanol synthesis by providing a new benchmark for this cost‐effective and earth‐abundant catalyst family.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Ministerio de Ciencia e Innovación

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3