Revealing the Valence Evolution of Metal Element in Heterostructures for Ultra‐High Power Li‐Ion Capacitors

Author:

Tao Shusheng1,Cai Jieming1,Cao Ziwei1,Song Bai2,Deng Wentao1,Liu Youcai1,Hou Hongshuai1,Zou Guoqiang1ORCID,Ji Xiaobo1ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China

2. Dongying Cospowers Technology Limited Company Dongying Shandong 257092 China

Abstract

AbstractThe difficulty in matching cathode and anode kinetics due to slow ion transport in anodes constrains the development of lithium‐ion capacitors. Heterogeneous structures with built‐in electric field can promote lithium‐ion migration and improve the anode reaction kinetics. However, the valence evolution of metal elements in heterostructures during charging/discharging processes is often overlooked. Inspired by theoretical calculations, transition metal selenides heterostructures (FeSe2/CoSe2) with low migration energy barriers (E b = 0.35 eV) are successfully engineered and fabricated. As expected, the designed heterostructure material exhibits outstanding rate performance (512 mAh g−1 at 30 A g−1) and ultra‐high pseudocapacitance contribution (98.02% at 1.0 mV s−1), exceeding the state‐of‐the‐art values for anodes. Impressively, synchrotron X‐ray absorption spectroscopy (SXAS) and ex situ XPS find that the valence states of the Fe and Co elements in the heterogeneous structure gradually increase as charging and discharging proceeds, inducing a continuous climb in reversible specific capacity, while further reducing the migration energy barrier in the heterogeneous structure (E b = 0.20 eV). This work reveals that the valence states of iron and cobalt elements increase as charging and discharging proceeds, providing theoretical guidance for improving the anode kinetics and revealing the capacity rise mechanism of other transition metal compounds.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3