Tuning d–p Orbital Hybridization of NiMoO4@Mo15Se19/NiSe2 Core‐Shell Nanomaterials via Asymmetric Coordination Interaction Enables the Water Oxidation Process

Author:

Zhang Qiong12,Zhang Wen1,Zhu Jiawei1,Zhou Xinyuan1,Xu Guang‐Rui1,Chen Dehong1,Wu Zexing12,Wang Lei12ORCID

Affiliation:

1. Key Laboratory of Eco‐chemical Engineering Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology School of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

2. College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

Abstract

AbstractThe electrocatalytic performance of MoNi‐based nanomaterials undergo selenization has garnered significant interest due to their modified electronic structure, while still posses certain challenges for obtained bimetallic selenides. Here, a novel MoNi‐based electrocatalyst of NiMoO4@Mo15Se19/NiSe2 core‐shell nanomaterials is constructed to promote the desorption of OOH* which can facilitate the water oxidation process. NiMoO4@Mo15Se19/NiSe2 core‐shell nanoarrays show that the “cores” are mainly NiMoO4 nanorods while the “shells” are the bimetallic selenides nanoflakes, which are super architectures that can expand more active sites and accelerate the electron transfer. Moreover, the hybridization interaction between Ni 3d, Mo 4d, and Se 4p orbitals leads to an asymmetric distribution of electric clouds, which decreases the adsorption energy and transformation of oxygen‐containing species. Electrochemical data displays that the overpotentials of NiMoO4@Mo15Se19/NiSe2 core‐shell nanomaterials are only 195 mV, 220 mV, and 224 mV for oxygen evolution reaction (OER) in alkaline freshwater, alkaline simulated seawater, and alkaline natural seawater. The current density decay is negligible after 100 h stability at about 1.46 V with a three‐electrode system in alkaline natural seawater. The low cost and the unique MoNi‐based bimetallic selenides in this work provide a more constructive solution for designing efficient and stable OER catalysts in the future.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Major Scientific and Technological Innovation Project of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3