Oxygen Vacancies‐Rich Metal Oxide for Electrocatalytic Nitrogen Cycle

Author:

Wei Xiaoxiao123,Chen Chen3,Fu Xian‐Zhu1,Wang Shuangyin3ORCID

Affiliation:

1. College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China

2. College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China

3. State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics College of Chemistry and Chemical Engineering Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China

Abstract

AbstractThe development of industry and agriculture has been accompanied by an artificially imbalanced nitrogen cycle, which threatens human health and ecological environments. Electrocatalytic systems have emerged as a sustainable way of converting nitrogen‐containing molecules into high value‐added chemicals. However, the construction of high‐performance electrocatalysts remains challenging. The development of oxygen vacancy engineering strategy has promoted more research efforts to explore the structure‐activity relationship between catalytic activity and oxygen vacancies. This review systematically summarizes the recent development of oxygen vacancies‐rich metal oxides for electro‐catalyzing nitrogen cycling systems, involving electrocatalytic nitrate reduction reaction, nitric oxide reduction reaction, nitrogen reduction reaction, C─N coupling, urea oxidation reaction, and nitrogen oxidation reaction. First, the construction methods and characterization methods of oxygen vacancies are summarized. Then, the effect of oxygen vacancy on electrocatalytic activity of metal oxides is discussed in terms of regulating the electronic structures of electrocatalysts, improving the electroconductivity of catalysts, lowing the energy barrier, and strengthening adsorption and activation of intermediate species. Finally, future directions for oxygen vacancy engineering and electrocatalytic nitrogen cycle are anticipated.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3