Leveraging Dual‐Atom Catalysts for Electrocatalysis Revitalization: Exploring the Structure‐Performance Correlation

Author:

Wong Man‐Kei12,Foo Joel Jie12,Loh Jian Yiing12,Ong Wee‐Jun12345ORCID

Affiliation:

1. School of Energy and Chemical Engineering Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia

2. Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia

3. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

4. Gulei Innovation Institute Xiamen University Zhangzhou 363200 China

5. Shenzhen Research Institute of Xiamen University Shenzhen 518057 China

Abstract

AbstractIn light of the profound shift toward renewable fuels, dual‐atom catalysts (DACs) are impressively prospected as auspicious catalysts for electrocatalysis revitalization, toward accomplishing environmental remediation and sustainable global energy security. Leveraging appealing attributes such as inspiring synergistic effect, additional adjacent adsorption sites, and ultrahigh atom utilization, DACs are endowed with unprecedented stability, activity, and selectivity in multifarious energy‐related applications. By virtue of addressing time and technological prominence to review this ground‐breaking atomic electrocatalyst, this review first encompasses a correlation elucidation between the substrate, dual‐atoms, and facile synthetic approaches with intriguing modification strategies. Furthermore, the state‐of‐the‐art characterization techniques specially employed for DACs are spotlighted, alongside rigorously unveiling the novel mechanistic insights’ milestone gained from both theoretical modeling and experimental research in multitudes of environmentally benign electrocatalytic applications, including O2 reduction, CO2 reduction, H2 evolution, O2 evolution, N2 reduction, and other fundamental reactions. As a final note, this review presents a brief conclusion highlighting current challenges and outlining prospects for this frontier. Importantly, this review deciphers the structure‐performance correlation while excavating the advancement gained in DACs, thus is anticipated to shed light for the catalysis community on bolstering an intense evolution of DACs while triggering sapient inspiration for more robust next‐generation catalysts.

Funder

State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Ministry of Higher Education, Malaysia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3