Mechanical Milling – Induced Microstructure Changes in Argyrodite LPSCl Solid‐State Electrolyte Critically Affect Electrochemical Stability

Author:

Wang Yixian1ORCID,Hao Hongchang1,Naik Kaustubh G.2,Vishnugopi Bairav S.2,Fincher Cole D.3ORCID,Yan Qianqian3,Raj Vikalp1ORCID,Celio Hugo1ORCID,Yang Guang4,Fang Hong56,Chiang Yet‐Ming3ORCID,Perras Frédéric A.78ORCID,Jena Puru9,Watt John10ORCID,Mukherjee Partha P.2,Mitlin David1ORCID

Affiliation:

1. Materials Science and Engineering Program & Texas Materials Institute (TMI) The University of Texas at Austin Austin TX 78712 USA

2. School of Mechanical Engineering Purdue University West Lafayette IN 47907 USA

3. Department of Materials Science & Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

4. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37830 USA

5. Department of Physics Rutgers University Camden NJ 08102 USA

6. Center for Computational and Integrative Biology Rutgers University Camden NJ 08103 USA

7. Chemical and Biological Sciences Division Ames National Laboratory Ames IA 50011 USA

8. Department of Chemistry Iowa State University Ames IA 50011 USA

9. Department of Physics Virginia Commonwealth University Richmond VA 23238 USA

10. Center for Integrated Nanotechnologies Los Alamos National Laboratory Los Alamos NM 87545 USA

Abstract

AbstractMicrostructure of argyrodite solid‐state electrolyte (SSE) critically affects lithium metal electrodeposition/dissolution. While the stability of unmodified SSE is mediocre, once optimized state‐of‐the‐art electrochemical performance is achieved (symmetric cells, full cells with NMC811) without secondary interlayers or functionalized current collectors. Planetary mechanical milling in wet media (m‐xylene) is employed to alter commercial Li6PS5Cl (LPSCl) powder. Quantitative stereology demonstrates how milling progressively refines grain and pore size/distribution in the SSE compact, increases its density, and geometrically smoothens the SSE‐Li interface. Mechanical indentation demonstrates that these changes lead to reduced site‐to‐site variation in the compact's hardness. Milled microstructures promote uniform early‐stage electrodeposition on foil collectors and stabilize solid electrolyte interphase (SEI) reactivity. Analysis of half‐cells with bilayer electrolytes demonstrates the importance of microstructure directly contacting current collector, with interface roughness due to pore and grain size distribution being key. For the first time, short‐circuiting Li metal dendrite is directly identified, employing 1.5 mm diameter “mini” symmetrical cell and cryogenic focused ion beam (cryo‐FIB) electron microscopy. The branching sheet‐like dendrite traverses intergranularly, filling the interparticle voids and forming an SEI around it. Mesoscale modeling reveals the relationship between Li‐SSE interface morphology and the onset of electrochemical instability, based on underlying reaction current distribution.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3