Influence of Post‐Synthesis Processing on the Structure, Transport, and Performance of the Solid Electrolyte Li5.5PS4.5Cl1.5 in All‐Solid‐State Batteries

Author:

Maus Oliver12,Lange Martin A.1,Frankenberg Finn3,Stainer Florian4,Faka Vasiliki1,Schlautmann Eva1,Rosenbach Carolin1,Jodlbauer Anna4,Schubert Johannes56,Janek Jürgen56,Li Cheng7,Michalowski Peter3,Wilkening H. Martin R.4,Kwade Arno3,Zeier Wolfgang G.128ORCID

Affiliation:

1. Institute of Inorganic and Analytical Chemistry University of Münster Corrensstraße 28‐30 D‐48149 Münster Germany

2. International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA) University of Münster Corrensstraße 40 D‐48149 Münster Germany

3. Institute for Particle Technology Technische Universität Braunschweig Volkmaroder Straße 5 D‐38104 Braunschweig Germany

4. Institute of Chemistry and Technology of Materials Graz University of Technology (NAWI Graz) Stremayrgasse 9 Graz A‐8010 Austria

5. Institute of Physical Chemistry Justus Liebig University Heinrich‐Buff‐Ring 17 D‐35392 Giessen Germany

6. Center for Materials Research (ZfM) Justus Liebig University Heinrich‐Buff‐Ring 16 D‐35392 Giessen Germany

7. Neutron Science Division Oak Ridge National Laboratory Oak Ridge TN 37830 USA

8. Institute of Energy Materials and Devices (IMD) IMD‐4: Helmholtz‐Institut Münster Forschungszentrum Jülich Corrensstraße 46 D‐48149 Münster Germany

Abstract

AbstractWhile post‐synthesis processing steps are frequently applied in the preparation of cathode composites for solid‐state batteries to ensure homogeneous mixing and good contact with the cathode active material, little is known about the processes that occur during milling and how they influence structure and transport of solid electrolytes. Here, an extensive set of experimental methods and simulations are used to study the effects of post‐synthesis milling by a frequency and planetary ball mill on the highly conducting chloride‐rich argyrodite Li5.5PS4.5Cl1.5. Structural analyses show that processing can reduce the coherence length and increase the disorder. The reduced crystallite size correlates with a decrease in ionic conductivity in the post‐processed solid electrolytes. Simulating the ball milling processes by the discrete element method provides fundamental understanding and reveals the correlation of the loss in coherence with the specific energy input and the numbers of stressing events during the milling process. An observed decrease in particle size in ball milled samples leads to lower tortuosity in the cathode composites. As the loss in coherence and decrease in particle size have opposite effects on the performance, optimizing these processing conditions will play a significant role on the road to highly performing solid‐state batteries.

Funder

Deutsche Forschungsgemeinschaft

Österreichische Forschungsförderungsgesellschaft

Bundesministerium für Bildung und Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3