P3‐Na0.45Ni0.2Mn0.8O2/Na2SeO4 Heterostructure Enabling Long‐Life and High‐Rate Sodium‐Ion Batteries

Author:

Song Tianyi1ORCID,Wang Chenchen1ORCID,Kang Lei2,Yao Wenjiao3,Wang Heyi4ORCID,Chen Huige2,Liu Qi5ORCID,Lu Yang6,Guan Zhiqiang1,Zhu Anquan1ORCID,Kang Tianxing1ORCID,Tang Yongbing3ORCID,LEE Chun‐Sing1ORCID

Affiliation:

1. Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF) City University of Hong Kong Hong Kong 999077 P. R. China

2. Functional Crystals Lab Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

3. Advanced Energy Storage Technology Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China

4. Department of Mechanical Engineering City University of Hong Kong Hong Kong 999077 P. R. China

5. Department of Physics City University of Hong Kong Hong Kong 999077 P. R. China

6. Department of Mechanical Engineering University of Hong Kong Hong Kong 999077 P. R. China

Abstract

AbstractSodium‐based layered oxide cathodes are competitive candidates for commercial sodium‐ion batteries owing to their high theoretical capacities, low costs, and simple synthesis. P3‐type layered oxides with large open channels enable fast Na+ transport and hence good rate performance. However, the lower crystal symmetry of P3‐type oxides and variation of Na+ contents in the Na layer during desodiation/sodiation lead to large electrostatic repulsion changes between TMO2 slabs (TM=Transition Metal), resulting in irreversible phase transitions, and fast performance degradation. Herein, a potential Na+ conductor Na2SeO4 is first found that it can be easily in situ grown on P3‐Na0.45Ni0.2Mn0.8O2 to form a novel heterostructure P3‐Na0.45Ni0.2Mn0.8O2/Na2SeO4. The synergy between P3‐Na0.45Ni0.2Mn0.8O2 and Na2SeO4 functions in promoting Na+ diffusion and suppressing P3‐O3 phase transitions upon deep sodiation, which results in recorded high‐rate capability (68.2% capacity retention with retained 83.9 mAh g−1 capacity at 6400 mA g−1) and superior cycling stability (capacity retention 75% after 1000 cycles) among all reported P3‐type cathodes. Thus, it is believed that this novel heterostructure design opens a new pathway to promote practical applications for layered oxide cathodes in sodium‐ion batteries.

Funder

National Basic Research Program of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3