The Cycling Mechanism of Manganese‐Oxide Cathodes in Zinc Batteries: A Theory‐Based Approach

Author:

Herrmann Niklas J.123ORCID,Euchner Holger34ORCID,Groß Axel23,Horstmann Birger123ORCID

Affiliation:

1. German Aerospace Center (DLR) Institute of Engineering Thermodynamics Wilhelm‐Runge‐Strasse 10 D‐89081 Ulm Germany

2. Helmholtz Institute Ulm (HIU) Helmholtzstr. 11 D‐89081 Ulm Germany

3. Institute of Electrochemistry Ulm University (UUlm) Albert‐Einstein‐Allee 47 D‐89081 Ulm Germany

4. Institute of Physical and Theoretical Chemistry University of Tübingen Auf der Morgenstelle 18 D‐72076 Tübingen Germany

Abstract

AbstractZinc‐based batteries offer good volumetric energy densities and are compatible with environmentally friendly aqueous electrolytes. Zinc‐ion batteries (ZIBs) rely on a lithium‐ion‐like Zn2+‐shuttle, which enables higher roundtrip efficiencies and better cycle life than zinc‐air batteries. Manganese‐oxide cathodes in near‐neutral zinc sulfate electrolytes are the most prominent candidates for ZIBs. Zn2+‐insertion, H+‐insertion, and Mn2+‐dissolution are proposed to contribute to the charge‐storage mechanism. During discharge and charge, two distinct phases are observed. Notably, the pH‐driven precipitation of zinc‐sulfate‐hydroxide is detected during the second discharge phase. However, a complete and consistent understanding of the two‐phase mechanism of these ZIBs is still missing. This paper presents a continuum full cell model supported by density functional theory (DFT) calculations to investigate the implications of these observations. The complex‐formation reactions of near‐neutral aqueous electrolytes are integrated into the battery model and, in combination with the DFT calculations, draw a consistent picture of the cycling mechanism. The interplay between electrolyte pH and reaction mechanisms is investigated at the manganese‐oxide cathodes and the dominant charge‐storage mechanism is identified. The model is validated with electrochemical cycling data, cyclic voltammograms, and in situ pH measurements. This allows to analyze the influence of cell design and electrolyte composition on cycling and optimize the battery performance.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3