Affiliation:
1. School of Environmental and Materials Engineering Yantai University Yantai 264005 China
2. Research Institute of Intelligent Sensing Zhejiang Lab Hangzhou 311100 China
3. Shenzhen Geim Graphene Center Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
Abstract
AbstractAt present, aqueous rechargeable Zn–MnO2 batteries have attracted widespread attention as green potential application for renewable energy storage devices. MnO2 cathode has great potential for application, but its proton reaction results in side reactions of cathode, electrolyte consumption, and dramatic pH value changes, suffering from capacity degradation. To address the issues caused by proton deficit, a proton–limited domain strategy is proposed by integrating solid acids (Sulfonic acid type polystyrene–divinylbenzene, SATP) with proton exchange reactions into MnO2. SATP can act as a new proton source increasing the amount of H+ and reducing the generation of zinc hydroxide sulfate, by–product of proton at the cathode interface, via proton exchange reactions of ‐HSO3– group. As a result, Zn–MnO2/SATP battery delivered with excellent rate performance (218.4 mAh g–1 at 2 A g–1) and high cycling stability (the retained capacity of 115.8 mAh g–1 after 500 cycles at a current density of 1 A g–1. This work provides an innovative strategy for high performance aqueous Zn–MnO2 batteries.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献