Affiliation:
1. Shenzhen Key Laboratory of Synthetic Genomics Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
2. School of Biology and Biological Engineering South China University of Technology Guangzhou China
3. Shenzhen Branch Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences Shenzhen China
Abstract
AbstractDeoxyribonucleic acid (DNA) has been suggested as a very promising medium for data storage in recent years. Although numerous studies have advocated for DNA data storage, its practical application remains obscure and there is a lack of a user‐oriented platform. Here, we developed a DNA data storage platform, named Storage‐D, which allows users to convert their data into DNA sequences of any length and vice versa by selecting algorithms, error‐correction, random‐access, and codec pin strategies in terms of their own choice. It incorporates a newly designed “Wukong” algorithm, which provides over 20 trillion codec pins for data privacy use. This algorithm can also control GC content to the selected standard, as well as adjust the homopolymer run length to a defined level, while maintaining a high coding potential of ~1.98 bis/nt, allowing it to outperform previous algorithms. By connecting to a commercial DNA synthesis and sequencing platform with “Storage‐D,” we successfully stored “Diagnosis and treatment protocol for COVID‐19 patients” into 200 nt oligo pools in vitro, and 500 bp genes in vivo which replicated in both normal and extreme bacteria. Together, this platform allows for practical and personalized DNA data storage, potentially with a wide range of applications.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献