High strength and anti‐swelling hydrogel strain sensors based on amphiphilic polyurethane assemblies for human‐motion detection

Author:

Lei Lingling12,Chen Baocheng3,Wang Shiyu12,Cheng Xu12,Qiu Jinghong1,Wang Haibo12ORCID

Affiliation:

1. College of Biomass Science and Engineering Sichuan University Chengdu PR China

2. The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu PR China

3. CNNP Zheneng Energy Co., Ltd. Xiangshan PR China

Abstract

AbstractHydrogel sensors are widely used in electronic skin, soft robotics, bioengineering, and medical therapy due to their excellent electrical conductivity, mechanical flexibility, and better biocompatibility. However, the swelling property of hydrogels has been hindering their application in underwater scenarios. Therefore, in this study, to address the anti‐swelling behavior of hydrogels, MXene nanosheets were modified by 1H,1H,2H,2H‐perfluorooctyltrimethoxysilane and then compounded with acrylamide and polyurethane to obtain multifunctional conductive hydrogels (PAM‐WPU/FMX hydrogels). Through the synergistic effect of chemical cross‐linking and hydrogen bonding on the gel network, the hydrogel sensor was characterized by strong resistance to swelling (swelling ratio = 2.22), excellent mechanical properties (strain at break after swelling equilibrium = 418.6%), and high strain sensitivity. For underwater applications, this study offers a model technique for the quick gelation of strong, swelling‐resistant hydrogels.Highlights Amphiphilic polyurethane micelles provided energy dissipation. Modified MXene was hydrophobic and electrically conductive. The strain of the hydrogel obtained after MXene modification was enhanced. The structural recovery capacity of both hydrogels was more than 60%. The modified hydrogel swollen but still had excellent sensing properties.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3