Self‐healing, adhesive, photothermal responsive, stretchable, and strain‐sensitive supramolecular nanocomposite hydrogels based on host–guest interactions

Author:

Chen Shiying1,Nie Yixuan1,Huang Yingying1,Yang Yuxuan1,Chen Hongyi1,Zhang Xiongzhi1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology Wuhan China

Abstract

AbstractThe development of multifunctional supramolecular nanocomposite hydrogels remains challenging. Here, the dynamic host–guest interactions involving the host molecule CB[8] and guest units were utilized to prepare Fe3O4 hybrid supramolecular nanocomposite hydrogels. The results showed that the hydrogels obtained possessed a porous structure. The CB[8]‐modified Fe3O4 (Fe3O4@CB[8]) nanoparticles served as cross‐linkers in forming the network of hydrogels. By adjusting the Fe3O4@CB[8] content, the mechanical properties of the hydrogels could be controlled. The tensile stress was measured at 160 kPa with a fracture strain of 1380%, while the compression stress was 230 kPa at 70% compression strain. The self‐healing efficiency of the hydrogels at room temperature reached 95% after 24 h. The as‐obtained hydrogels show strain sensitivity and have the potential for applications in detecting elbow and finger movements. Our supramolecular nanocomposite hydrogels exhibit multiple functions, including self‐healing, injectability, photothermal responsiveness, and conductivity, making them suitable for integration into flexible electronics.Highlights Fe3O4@CB[8] nanoparticles serve as cross‐linkers for the nanocomposite hydrogels. CB[8] based host–guest interactions enable hydrogels to self‐heal. Fe3O4@CB[8] endow hydrogels with stretchability and photothermal responsiveness. Hydrogels exhibit injectability, NIR responsiveness, and conductive ability.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3