Deep learning intravoxel incoherent motion modeling: Exploring the impact of training features and learning strategies

Author:

Kaandorp Misha P. T.12ORCID,Zijlstra Frank12ORCID,Federau Christian34,While Peter T.12ORCID

Affiliation:

1. Department of Radiology and Nuclear Medicine St. Olav's University Hospital Trondheim Norway

2. Department of Circulation and Medical Imaging NTNU – Norwegian University of Science and Technology Trondheim Norway

3. Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland

4. AI Medical Zurich Switzerland

Abstract

PurposeThe development of advanced estimators for intravoxel incoherent motion (IVIM) modeling is often motivated by a desire to produce smoother parameter maps than least squares (LSQ). Deep neural networks show promise to this end, yet performance may be conditional on a myriad of choices regarding the learning strategy. In this work, we have explored potential impacts of key training features in unsupervised and supervised learning for IVIM model fitting.MethodsTwo synthetic data sets and one in‐vivo data set from glioma patients were used in training of unsupervised and supervised networks for assessing generalizability. Network stability for different learning rates and network sizes was assessed in terms of loss convergence. Accuracy, precision, and bias were assessed by comparing estimations against ground truth after using different training data (synthetic and in vivo).ResultsA high learning rate, small network size, and early stopping resulted in sub‐optimal solutions and correlations in fitted IVIM parameters. Extending training beyond early stopping resolved these correlations and reduced parameter error. However, extensive training resulted in increased noise sensitivity, where unsupervised estimates displayed variability similar to LSQ. In contrast, supervised estimates demonstrated improved precision but were strongly biased toward the mean of the training distribution, resulting in relatively smooth, yet possibly deceptive parameter maps. Extensive training also reduced the impact of individual hyperparameters.ConclusionVoxel‐wise deep learning for IVIM fitting demands sufficiently extensive training to minimize parameter correlation and bias for unsupervised learning, or demands a close correspondence between the training and test sets for supervised learning.

Funder

Norges Forskningsråd

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3