AI2ES: The NSF AI Institute for Research on Trustworthy AI for Weather, Climate, and Coastal Oceanography

Author:

McGovern Amy12ORCID,Ebert‐Uphoff Imme3,Barnes Elizabeth A.4,Bostrom Ann5,Cains Mariana G.6,Davis Phillip7,Demuth Julie L.6,Diochnos Dimitrios I.2,Fagg Andrew H.2,Tissot Philippe8,Williams John K.9,Wirz Christopher D.6

Affiliation:

1. School of Meteorology University of Oklahoma Norman Oklahoma USA

2. School of Computer Science University of Oklahoma Norman Oklahoma USA

3. Electrical and Computer Engineering & Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins Colorado USA

4. Department of Atmospheric Science Colorado State University Fort Collins Colorado USA

5. Evans School of Public Policy and Governance University of Washington Seattle Washington USA

6. National Center for Atmospheric Research Boulder Colorado USA

7. Del Mar College Corpus Christi Texas USA

8. Conrad Blucher Institute Texas A&M University—Corpus Christi Corpus Christi Texas USA

9. The Weather Company IBM Business Armonk New York USA

Abstract

AbstractThe NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) focuses on creating trustworthy AI for a variety of environmental and Earth science phenomena. AI2ES includes leading experts from AI, atmospheric and ocean science, risk communication, and education, who work synergistically to develop and test trustworthy AI methods that transform our understanding and prediction of the environment. Trust is a social phenomenon, and our integration of risk communication research across AI2ES activities provides an empirical foundation for developing user‐informed, trustworthy AI. AI2ES also features activities to broaden participation and for workforce development that are fully integrated with AI2ES research on trustworthy AI, environmental science, and risk communication.

Funder

Directorate for Geosciences

Publisher

Wiley

Reference15 articles.

1. Sinh‐Arcsinh‐Normal Distributions to Add Uncertainty to Neural Network Regression Tasks: Applications to Tropical Cyclone Intensity Forecasts;Barnes E. A.;EDS,2023

2. This Looks Like That There: Interpretable Neural Networks for Image Tasks When Location Matters;Barnes E. A.;AIES,2022

3. Trust and trustworthy artificial intelligence: A research agenda for AI in the environmental sciences

4. Cains M. G. C. D.Wirz J. L.Demuth A.Bostrom A.McGovern I.Ebert‐Uphoff D. J.Gagne A.Burke andR.Sobash.2023. “Exploring what AI/ML Guidance Features NWS Forecasters Deem Trustworthy.” In103nd AMS Annual Meeting.AMS.

5. Diochnos D. I. andT. B.Trafalis.2021. “Learning Reliable Rules under Class Imbalance.” InSDM 28–36.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3