Trust and trustworthy artificial intelligence: A research agenda for AI in the environmental sciences

Author:

Bostrom Ann1ORCID,Demuth Julie L.2ORCID,Wirz Christopher D.2ORCID,Cains Mariana G.2ORCID,Schumacher Andrea2,Madlambayan Deianna1ORCID,Bansal Akansha Singh3,Bearth Angela4ORCID,Chase Randy5,Crosman Katherine M.6ORCID,Ebert‐Uphoff Imme3ORCID,Gagne David John7ORCID,Guikema Seth8ORCID,Hoffman Robert9,Johnson Branden B.10,Kumler‐Bonfanti Christina11,Lee John D.12,Lowe Anna13,McGovern Amy514ORCID,Przybylo Vanessa15,Radford Jacob T.3ORCID,Roth Emilie16,Sutter Carly15,Tissot Philippe17ORCID,Roebber Paul18,Stewart Jebb Q.19,White Miranda17,Williams John K.20

Affiliation:

1. Evans School of Public Policy & Governance University of Washington Seattle Washington USA

2. Mesoscale & Microscale Meteorology Lab National Center for Atmospheric Research (NCAR) Boulder Colorado USA

3. Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins Colorado USA

4. Consumer Behavior, Institute for Environmental Decisions ETH Zürich Zürich Switzerland

5. School of Meteorology University of Oklahoma Norman Oklahoma USA

6. Department of Marine Technology, Faculty of Engineering Norwegian University of Science and Technology Trondheim Norway

7. Computational & Information Systems Lab National Center for Atmospheric Research Boulder Colorado USA

8. Industrial & Operations Engineering University of Michigan Ann Arbor Michigan USA

9. Institute for Human & Machine Cognition Pensacola Florida USA

10. Decision Research Eugene Oregon USA

11. Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Boulder Colorado USA

12. Industrial and Systems Engineering University of Wisconsin‐Madison Madison Wisconsin USA

13. Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh North Carolina USA

14. School of Computer Science University of Oklahoma Norman Oklahoma USA

15. Department of Atmospheric and Environmental Sciences University at Albany, State University of New York Albany New York USA

16. Roth Cognitive Engineering Brookline Massachusetts USA

17. Conrad Blucher Institute for Surveying and Science Texas A&M University‐Corpus Christi Corpus Christi Texas USA

18. School of Freshwater Sciences University of Wisconsin‐Milwaukee Milwaukee Wisconsin USA

19. Global Systems Laboratory, Oceanic and Atmospheric Research National Oceanic and Atmospheric Administration Boulder Colorado USA

20. The Weather Company, an IBM Business Andover Massachusetts USA

Abstract

AbstractDemands to manage the risks of artificial intelligence (AI) are growing. These demands and the government standards arising from them both call for trustworthy AI. In response, we adopt a convergent approach to review, evaluate, and synthesize research on the trust and trustworthiness of AI in the environmental sciences and propose a research agenda. Evidential and conceptual histories of research on trust and trustworthiness reveal persisting ambiguities and measurement shortcomings related to inconsistent attention to the contextual and social dependencies and dynamics of trust. Potentially underappreciated in the development of trustworthy AI for environmental sciences is the importance of engaging AI users and other stakeholders, which human–AI teaming perspectives on AI development similarly underscore. Co‐development strategies may also help reconcile efforts to develop performance‐based trustworthiness standards with dynamic and contextual notions of trust. We illustrate the importance of these themes with applied examples and show how insights from research on trust and the communication of risk and uncertainty can help advance the understanding of trust and trustworthiness of AI in the environmental sciences.

Funder

National Science Foundation

Publisher

Wiley

Subject

Physiology (medical),Safety, Risk, Reliability and Quality

Reference148 articles.

1. Big Data Research in Information Systems: Toward an Inclusive Research Agenda

2. Test of a poor man's ensemble prediction system for short‐range probability forecasting;Arribas A.;Monthly Weather Review,2005

3. Ashoori M. &Weisz J. D.(2019).In AI we trust? Factors that influence trustworthiness of AI‐infused decision‐making processes. arXiv preprint arXiv:1912.02675.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3