Sensitivity analysis for principal ignorability violation in estimating complier and noncomplier average causal effects

Author:

Nguyen Trang Quynh1ORCID,Stuart Elizabeth A.123,Scharfstein Daniel O.4,Ogburn Elizabeth L.2

Affiliation:

1. Department of Mental Health Johns Hopkins School of Public Health Baltimore Maryland

2. Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Baltimore Maryland

3. Department of Health Policy and Management Johns Hopkins Bloomberg School of Public Health Baltimore Maryland

4. Division of Biostatistics, Department of Population Health Sciences University of Utah School of Medicine Salt Lake City Utah

Abstract

An important strategy for identifying principal causal effects (popular estimands in settings with noncompliance) is to invoke the principal ignorability (PI) assumption. As PI is untestable, it is important to gauge how sensitive effect estimates are to its violation. We focus on this task for the common one‐sided noncompliance setting where there are two principal strata, compliers and noncompliers. Under PI, compliers and noncompliers share the same outcome‐mean‐given‐covariates function under the control condition. For sensitivity analysis, we allow this function to differ between compliers and noncompliers in several ways, indexed by an odds ratio, a generalized odds ratio, a mean ratio, or a standardized mean difference sensitivity parameter. We tailor sensitivity analysis techniques (with any sensitivity parameter choice) to several types of PI‐based main analysis methods, including outcome regression, influence function (IF) based and weighting methods. We discuss range selection for the sensitivity parameter. We illustrate the sensitivity analyses with several outcome types from the JOBS II study. This application estimates nuisance functions parametrically – for simplicity and accessibility. In addition, we establish rate conditions on nonparametric nuisance estimation for IF‐based estimators to be asymptotically normal – with a view to inform nonparametric inference.

Funder

Office of Naval Research

National Institute of Mental Health

National Institutes of Health

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3