Fully automatic detection of lung nodules in CT images using a hybrid feature set
Author:
Affiliation:
1. Department of Electrical Engineering; University of Engineering & Technology; Taxila 47080 Pakistan
2. Department of Electronic and Electrical Engineering; University of Sheffield; Mappin Street Sheffield S1 3JD UK
Publisher
Wiley
Subject
General Medicine
Reference54 articles.
1. Cancer statistics, 2015;Siegel;CA Cancer J Clin,2015
2. Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor;Choi;Comput Methods Programs Biomed,2014
3. Automatic 3D pulmonary nodule detection in CT images: a survey;Valente;Comput Methods Programs Biomed,2015
4. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images;Kostis;IEEE Trans Med Imaging,2003
Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Early Detection of Lung Cancer with Low-Dose CT Scan Using Artificial Intelligence: A Comprehensive Survey;SN Computer Science;2024-04-17
2. Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis;Cancer Medicine;2024-04
3. On using a Particle Image Velocimetry based approach for candidate nodule detection;Multimedia Tools and Applications;2023-02-16
4. Research on the Application of Artificial Intelligence in Public Health Management: Leveraging Artificial Intelligence to Improve COVID-19 CT Image Diagnosis;International Journal of Environmental Research and Public Health;2023-01-09
5. Machine learning techniques for pulmonary nodule computer-aided diagnosis using CT images: A systematic review;Biomedical Signal Processing and Control;2023-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3