Optimal prescribed performance tracking control of nonlinear motor driven systems via adaptive dynamic programming

Author:

Zhao Jun1ORCID,Huang Yingbo2,Zang Wanshun34ORCID

Affiliation:

1. College of Transportation Shandong University of Science and Technology Qingdao China

2. Faculty of Mechanical and Electrical Engineering Kunming University of Science and Technology Kunming China

3. The Coal Mine Safety Mining Equipment Innovation Center of Anhui Province, School of Mining Engineering Anhui University of Science and Technology Huainan China

4. School of Information and Control Engineering Qingdao University of Technology Qingdao China

Abstract

AbstractAlthough optimal regulation problem has been well studied, resolving optimal tracking control via adaptive dynamic programming (ADP) has not been completely resolved, particularly for nonlinear uncertain systems. In this paper, an online adaptive learning method is developed to realize the optimal tracking control design for nonlinear motor driven systems (NMDSs), which adopts the concept of ADP, unknown system dynamic estimator (USDE), and prescribed performance function (PPF). To this end, the USDE in a simple form is first proposed to address the NMDSs with bounded disturbances. Then, based on the estimated unknown dynamics, we define an optimal cost function and derive the optimal tracking control. The derived optimal tracking control is divided into two parts, that is, steady‐state control and optimal feedback control. The steady‐state control can be obtained with the tracking commands directly. The optimal feedback control can be obtained via the concept of ADP based on the PPF; this contributes to improving the convergence of critic neural network (CNN) weights and tracking accuracy of NMDSs. Simulations are provided to display the feasibility of the designed control method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3