Challenges and Opportunities for Large‐Scale Electrode Processing for Sodium‐Ion and Lithium‐Ion Battery

Author:

Klemens Julian1ORCID,Wurba Ann‐Kathrin2ORCID,Burger David1ORCID,Müller Marcus3ORCID,Bauer Werner3ORCID,Büchele Sebastian3ORCID,Leonet Olatz4ORCID,Blázquez J. Alberto4ORCID,Boyano Iker4ORCID,Ayerbe Elixabete4ORCID,Ehrenberg Helmut3ORCID,Fleischer Jürgen2ORCID,Smith Anna3ORCID,Scharfer Philip1ORCID,Schabel Wilhelm1ORCID

Affiliation:

1. Thin Film Technology (TFT) Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany

2. Institute of Production Science (wbk) Karlsruhe Institute of Technology (KIT) Kaiserstr. 12 76131 Karlsruhe Germany

3. Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

4. CIDETEC Basque Research and Technology Alliance (BRTA) P° Miramón 196 20014 Donostia-San Sebastián Spain

Abstract

AbstractSodium‐ion batteries are an emerging technology that is still at an early stage of development. The electrode processing for anode and cathode is expected to be similar to lithium‐ion batteries (drop‐in technology), yet a detailed comparison is not published. There are ongoing questions about the influence of the active materials on processing parameters such as slurry viscosity, coating thicknesses, drying times, and behavior during fast drying. Herein, the expected drying time for the same areal capacity of anodes (graphite vs. hard carbon) and cathodes (lithium iron phosphate vs. Prussian blue analogs) are compared based on respective specific capacities reported in the literature. Estimates are made for the materials’ impact on production speed or dryer length. Within the experimental part, water‐based slurries of the same composition are mixed using different active materials according to identical procedure and the viscosity is compared. When drying at a constant drying rate (0.75 g m−2 s−1), lithium iron phosphate electrodes with different areal capacities (1–3 mAh cm−2) are shown to have the highest adhesion. For high drying rates (3 g m−2 s−1) at constant areal capacity, especially the investigated electrodes based on hard carbon show that no binder migration occurs.

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3