Modeling and Optimizing the Drying Process of Electrode Manufacturing for Lithium‐Ion Batteries

Author:

Chen Yuxin1ORCID,Tao Haolan12ORCID,Li Bing1,Li Baorong13,Lian Cheng13ORCID,Liu Honglai13

Affiliation:

1. State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China

2. Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education East China University of Science and Technology Shanghai 200237 China

3. School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China

Abstract

Drying the electrode is a crucial process in the manufacture of lithium‐ion batteries, which significantly affects the mechanical performance and cycle life of electrodes. High drying rate increases the battery production but reduces the uniformity of the binder in the electrode, which causes the detaching of the electrode from the collector. Herein, a physical model that couples solvent evaporation and binder diffusion is established to study the uneven enrichment of binder during the drying process. The results indicate that the drying process at the high solvent partial pressure and in a temperature‐drop situation ensures sufficient time for the diffusion of binder, which breaks the trade‐off between drying efficiency and electrode quality. Based on a comprehensive correlation analysis between process parameters and drying performance, an empirical equation is established to predict binder distribution. This work could offer insights into the formation and evolution of binder enrichment in electrodes and potentially provide guidelines for optimizing the drying processes of electrode.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3