Spray‐coated Hard Carbon Composite Anodes for Sodium‐Ion Insertion

Author:

Palanisamy Krishnaveni1,Daboss Sven1,Schäfer David2,Rohnke Marcus2ORCID,Derr Laurin3ORCID,Lang Marcel3,Schuster Rolf3ORCID,Kranz Christine1ORCID

Affiliation:

1. Institute of Analytical and Bioanalytical Chemistry Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany

2. Institute of Physical Chemistry Center for Materials Research Justus Liebig University of Giessen Heinrich-Buff-Ring 17 35392 Gießen Germany

3. Institute of Physical Chemistry Karlsruhe Institute of Technology Fritz-Haber-Weg 2 76131 Karlsruhe Germany

Abstract

AbstractSodium‐ion batteries are among the most promising alternatives to lithium‐ion batteries. Hard carbon (HC) electrodes have been recognized as suitable active anode material for mono‐valent ion batteries. Here, we present a simple and cost‐effective spray‐coating process to prepare HC composite electrodes on copper current collectors with different binder (sodium carboxymethyl cellulose, CMC) content and different HC particle sizes. The spray‐coated electrodes were evaluated and tested in 1 M sodium perchlorate (NaClO4) in propylene carbonate (PC) in dependence of the CMC content with and without fluoroethylene carbonate (FEC) as additive, and the performance was also compared to doctor bladed HC electrodes. Spray‐coated anodes in Na half‐cells revealed improved capacity during the first cycles compared with doctor bladed anodes with similar thicknesses. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) studies were performed, which revealed a significant increase of inorganic fluoro‐compounds in the formed solid electrolyte interphase (SEI) when FEC was present as additive. In addition, first single electrode microcalorimetry studies on spray‐coated thin HC composite electrodes yielded an entropy of the sodiation process of 80 J mol−1 K−1 at high state of charge (SoC), comparable to that of bulk Na deposition.

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3