High‐Energy‐Density Graphene Hybrid Flexible Fiber Supercapacitors

Author:

Zhou Yifan1,Guan Fanglan1,Zhao Fangfei1,Shen Yangmiao1,Bao Lihong1

Affiliation:

1. School of Materials Design and Engineering Beijing Institute of Fashion Technology Beijing 100029 P. R. China

Abstract

AbstractGraphene fiber‐based supercapacitors (GFSCs) as flexible energy‐storage devices have achieved much in the wearable electronics. However, the GFSCs still suffer insufficient energy density, and of which desirable balance between mechanical and electrochemical properties has not been realized. Herein, we developed AgI and conductive polymer assisted co‐enhancement strategy to prepare the high‐performance GFSCs with super‐high energy density, favorable mechanical properties, and superior electrochemical properties. The conductive binder polymer, poly(3,4‐ethylenedioxythiophene) (PEDOT) was introduced into the GO spinning solution to enhance RGO fiber strength, conductivity, and electrochemical performance by forming a strong interface with GO in the spinning solution. On the other hand, the synergistic effect of micro‐ and nano‐scale AgI grown on the fiber surface and aqueous gel electrolyte widen the potential window of the GFSC to 1.6 V, which is much higher than that of reported GFSCs, and resulting in a significantly increased energy density. At 0.1 A cm−3, the volumetric capacitance and energy density of the fabricated GFSCs are as high as 166.6 F cm−3 and 29.65 mWh cm−3, respectively. The high strength and flexibility of the hybrid fibers endowed the GFSCs with ∼100 % capacitance retention when bent to 180°. This work opens a new way to design and fabricate high‐performance GFSCs.

Funder

National Natural Science Foundation of China

Beijing Institute of Fashion Technology

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3