Hydrothermal synthesis of a graphene‐based composite enabling the fabrication of a current collector‐free microsupercapacitor with improved energy storage performance

Author:

Bouzina Adnane1,Meng René1,Pillier Françoise1,Perrot Hubert1ORCID,Sel Ozlem23ORCID,Debiemme‐Chouvy Catherine1ORCID

Affiliation:

1. Sorbonne Université CNRS Laboratoire Interfaces et Systèmes Electrochimiques LISE UMR 8235 4 place Jussieu F-75005 Paris France

2. Chimie du Solide et de l'Energie UMR 8260 Collège de France 11 Place Marcelin Berthelot F-75231 Paris Cedex 05 France

3. Réseau sur le Stockage Electrochimique de l'Energie (RS2E) CNRS FR 3459 33 Rue Saint Leu F-80039 Amiens Cedex France

Abstract

AbstractHerein, the development and the characterization of an all‐solid‐state symmetrical and current collector‐free microsupercapacitor based on a new reduced graphene oxide‐polydopamine (rGO‐PDA) composite are reported. The rGO‐PDA composite is synthesized by a facile, eco‐friendly and scalable hydrothermal approach in the presence of dopamine which can not only contribute to the oxygen functional groups removal from graphene oxide but also polymerize onto the rGO sheets reducing their restacking and improving the wettability of the electrode. The optimized rGO‐PDA composite material exhibits excellent capacitance and cycling stability as well as an improved rate capability compared to the pristine rGO in Na2SO4 solution. This performance enhancement can be linked to the higher transfer kinetic and lower transfer resistance values of the ions involved in the charge storage process of rGO‐PDA, as determined by ac‐electrogravimetry. Furthermore, an all‐solid‐state microsupercapacitor was prepared employing the optimized rGO‐PDA composite as electrode material. Interdigitated electrodes were obtained thanks to a CO2 laser and a Na2SO4/PVA hydrogel was employed, no current collector was used. This device achieves a noteworthy energy density of 6.2 mWh ⋅ cm−3 at a power density of 0.22 W ⋅ cm−3. Moreover, it exhibits exceptional cycling stability, retaining 104 % of its initial capacity even after undergoing 10,000 cycles at 2 V ⋅ s−1.

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3