Bioinspired Nanostructures by Soft‐Template Electropolymerization from Di‐Substituted Triphenylamine

Author:

Diallo Diawo1,Diouf Alioune1,Dramé Abdoulaye1,Sene Aboubacary1,Guittard Frédéric2,Darmanin Thierry2ORCID

Affiliation:

1. Faculté des Sciences et Techniques Département de Chimie Université Cheikh Anta Diop B.P. 5005 Dakar Sénégal

2. NICE Lab Université Côte d'Azur 06100 Nice France

Abstract

AbstractWe report a bioinspired approach to tune surface nanostructures by soft‐template electropolymerization in micellar conditions. Monomers highly favoring π‐stacking interactions are particularly interesting for favoring the polymer deposition in one direction. Here, original triphenylamine‐based monomers di‐substituted by thiophene and carbazole are investigated. Conjugated building blocks monomers are tested to favor deposition vs polymerization, even if the monomers are not perfectly planar. The carbazole derivatives have a much higher electrodeposition capacity than the thiophene derivatives, which is unexpected if thiophene and carbazole are taken alone. Moreover, in all electrodeposited films, monomer seems to be present as shown by cyclic voltammetry experiments, confirming previous works. The amount of monomer vs oligomers is highly dependent on the investigated monomer. For the resulting surface structures, hollow spheres and nanoribbons are particularly formed with some investigated monomers by cyclic voltammetry while nanotubes are observed at constant potential. The formation of nanotubes indicates a polymer growth more favored in one direction. These surfaces are less hydrophobic (water contact angle up to 111.5°) compared to films with spherical nanoparticles but these results can be explained only by the presence of air inside the surface roughness.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3