Affiliation:
1. Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2) Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P.R. China
2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 P.R. China
Abstract
AbstractLithium‐oxygen batteries (LOBs) hold great potential for electrochemical energy storage due to their high theoretical energy density. However, the utilization of conventional liquid electrolytes raises safety concerns such as flammability and leakage, which are also problematic in lithium‐ion batteries. The development of practical open battery systems employing volatile liquid electrolytes, with the ultimate goal of lithium‐air batteries, presents particular challenges. Solid‐state electrolytes (SSEs) have emerged as a promising solution to tackle these issues. In the past two decades, SSEs have garnered significant attention and have been successfully implemented in LOBs. This review aims to highlight recent advancements in SSEs for LOBs, exploring the opportunities and challenges associated with developing SSEs possessing high ionic conductivity, interfacial compatibility, and stability. The objective is to enhance reversibility, promote an increase in stable triple‐phase boundaries, and safeguard the Li anode in open battery systems. Finally, we put forth future directions for the advancement of solid‐state Li‐air batteries.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献