Oxygen Vacancies Riched PrOx Polycrystalline Nanorods on Graphene Nanosheets as Advanced Oxygen Catalysts for Lithium‐Oxygen Batteries

Author:

Zhan Xingyi1,Zhang Yifan1,Su Liwei12ORCID,Zhang Lei1,Tong Zijin1,Wu Hao1,Wang Lianbang12,Wang Yuanhao3,Wang Xiaoxiang4ORCID

Affiliation:

1. State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China

2. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 China

3. Hoffmann Institute of Advanced Materials Shenzhen Polytechnic Shenzhen 518055 P. R. China

4. Anteotech Queensland 4113 Australia

Abstract

AbstractThe slow reaction kinetics of Li−O is currently the most pressing technical obstacle to the development of lithium‐oxygen batteries. The Li2O2′s growth/decomposition pathways dominate the battery performance and can be optimized by exploring efficient cathode catalysts. Herein, we prepare regular, polycrystalline, oxygen vacancy (VO)‐riched PrOx uniformly anchored on few‐layered graphene (FLG) nanosheets to boost the Li−O reactions. XRD, TGA, XPS, SEM, TEM, SEAD, and electrochemical test techniques are used to study their chemical composition, microstructure, battery performance, and the effect of FLG on the formation of polycrystalline and VO. It is confirmed that FLG provides a large specific surface area and good electron transport. Moreover, it works as an anchoring substrate to transform PrOx from single crystal to polycrystalline, which is beneficial for exposing catalytic sites and VO and improving the battery performance. This unique composition and structure offer efficient active sites, accelerate electron transport, and regulate the Li2O2′s nucleation to form nanofilms or nanosheets on the catalyst. With this cathode catalyst, the battery achieved an ultralow total overpotential of 0.618 V, with a discharge capacity of 11489 mAh g−1 in the ultimate‐capacity mode and a superior cyclability of 85 cycles under the limited capacity of 500 mAh g−1.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Zhejiang Normal University

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3